(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x, a), y) → f(y, f(x, y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), z1) → f(z1, f(z0, z1))
Tuples:
F(f(z0, a), z1) → c(F(z1, f(z0, z1)), F(z0, z1))
S tuples:
F(f(z0, a), z1) → c(F(z1, f(z0, z1)), F(z0, z1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
f(
z0,
a),
z1) →
c(
F(
z1,
f(
z0,
z1)),
F(
z0,
z1)) by
F(f(z0, a), f(y0, a)) → c(F(f(y0, a), f(z0, f(y0, a))), F(z0, f(y0, a)))
F(f(f(y0, a), a), z1) → c(F(z1, f(f(y0, a), z1)), F(f(y0, a), z1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), z1) → f(z1, f(z0, z1))
Tuples:
F(f(z0, a), f(y0, a)) → c(F(f(y0, a), f(z0, f(y0, a))), F(z0, f(y0, a)))
F(f(f(y0, a), a), z1) → c(F(z1, f(f(y0, a), z1)), F(f(y0, a), z1))
S tuples:
F(f(z0, a), f(y0, a)) → c(F(f(y0, a), f(z0, f(y0, a))), F(z0, f(y0, a)))
F(f(f(y0, a), a), z1) → c(F(z1, f(f(y0, a), z1)), F(f(y0, a), z1))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
F(f(f(y0, a), a), z1) → c(F(z1, f(f(y0, a), z1)), F(f(y0, a), z1))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), z1) → f(z1, f(z0, z1))
Tuples:
F(f(z0, a), f(y0, a)) → c(F(f(y0, a), f(z0, f(y0, a))), F(z0, f(y0, a)))
S tuples:
F(f(z0, a), f(y0, a)) → c(F(f(y0, a), f(z0, f(y0, a))), F(z0, f(y0, a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
z0,
a),
f(
y0,
a)) →
c(
F(
f(
y0,
a),
f(
z0,
f(
y0,
a))),
F(
z0,
f(
y0,
a))) by
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), z1) → f(z1, f(z0, z1))
Tuples:
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
S tuples:
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
We considered the (Usable) Rules:none
And the Tuples:
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x1
POL(a) = [3]
POL(c(x1)) = x1
POL(f(x1, x2)) = [1] + [4]x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0, a), z1) → f(z1, f(z0, z1))
Tuples:
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
S tuples:none
K tuples:
F(f(x0, a), f(x1, a)) → c(F(x0, f(x1, a)))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))